
1

The 12 fundamentals
of embedded software
development
A case study on what you need to know
from first inspiration to masterclass

22IAR

Improve time to market with confident quality

1. Code Size

2. Code Performance

3. DevOps

4. Debugging

5. Code Quality

6. Access to Support

7. Development Environment

8. Compliance & Safety

9. Licensing

10. Conclusion

Contents

Overview

3

5

8

10

13

15

19

21

23

26

28

We are the world leader of software and services for embedded
system’s development. We enable our customers to create and
secure the products of today and the innovations of tomorrow.

For more about IAR and our services visit iar.com

3

From consumer electronics products to automotive
applications and industrial equipment: Customers
constantly demand more and new features from
products in ever-shorter cycles. These requirements
from the market have a direct impact on the embedded
software, which is instrumental in product differentiation,
and its development. Embedded applications have
become more complex than ever before and are built
in large and distributed teams with different skills.
There are many challenges and concerns to be
addressed to meet the embedded application
requirements, but still, developers need to be able
to focus on innovation and make the best out of the
product for differentiation in the market.
 For 40 years, IAR has been a part of embedded soft-
ware developers’ daily working routine and has a pro-
found understanding of their processes. Not only does
the fundamentals of embedded software development
as IAR see them affect the productivity, efficiency, and
quality of the product to be developed, but also the cost
and time to market.

Is it possible to speed up time to market, secure quality, and at the
same time stay within the budget? Particularly in the development
of embedded software, which ensures product differentiation and
thus a product’s success in the market, companies must weigh
which investments lead to a clear ROI (Return on Investment) and
a reasonable TCO (Total Cost of Ownership).

Improve time to market
with confident quality

Time to market

Device support
Code size

Code
performance

Code
quality

Debugging

Licensing
Access to support

Compliance
& safety

DevOps &
scalability

Ecosystem
& Partner

Security

Development
Environment

A Global technical support

B Debugging & trace probes

C Static code analysis

D Runtime analaysis

IAR
Embedded
Workbench

A
B

C

D
E

F

G

23+ architecures, one enivronment

E Safety Certification

F IP protection

G Production control

3

44

Time to market

Development Environment: preferably an
all-in-one IDE with project management tools
and editor

Device Support: from many vendors including
8-,16-,32- and 64-bit cores connected to
various projects in parallel and with different
requirements

Code Size: by optimizing the application,
companies could save money by using a
smaller device

Code Performance: for faster code and a better
user experience

Code Quality: translates into better products by
following the best programming practices

Debugging: the key to enable full control of
the application in real time to remove bugs and
improve quality

Licensing: plus easy license management
enable the customers to pay exactly for their
needs from single users to license pools

Access to Support: essential to make sure
programmers can focus on their code and get
assistance and training when needed

DevOps & Scalability: addressing the growing
demand and organizations need to modernize
their infrastructure towards automated CI/CD
workflows

Compliance & Safety: mandatory to prove that
companies are compliant with specific require-
ments in their sectors

Ecosystem & Partners: benefits customers
and provides the assurance that new devices,
middleware, and integrations will be supported
in future

Security: mandatory and companies are looking
on how to implement security in the early and
even late stages

01

02

03

04

05

06

07

08

09

10

11

12

The embedded development solutions from IAR cover all
the embedded software development fundamentals,
adding the value of increasing productivity and efficien-
cy, securing the quality, and accelerating time to market.
 This all comes at a cost that can be justified in the
Return on Investment (ROI) and Total Cost of Ownership
(TCO) use cases. In the following, specific cases show
how taking the fundamentals into account has a
positive impact on ROI and TCO. Security is not covered
in the case studies as it deserves a full separate analysis.
The topics “Ecosystem & Partners” and “Device Support”
are covered in the “Development Environment”
use case.

The 12 fundamentals of
embedded software development

4

5

1. Code size

Why should you care about code size and benchmarks? By
keeping your code size small, you can fit more functionality into
a given device. By keeping track of your processor’s benchmarks,
you can use a cheaper device with a smaller flash size. So, both
of these factors contribute to cost optimizations.

5

6

1. Code size

While CoreMark is a speed benchmark, it makes
– thanks to its wide-ranging approach – a great bench-
mark for size as well. Looking at one file of the bench-
mark (coremark.c) on a variety of devices, we see a
small degree of variability in the size depending on
the device used displayed in the figure to the right.
The tools, ARM RealView Compiler, GCC/GNU Tools
ARM Embedded with and without LTO, IAR ANSI C/
C++ Compiler for ARM are listed on the horizontal
axis. The bars show the code size in bytes on different
devices from NXP: Kinetis K70 (Cortex-M4F), KL25Z
(Cortex-M0+) and LPC11U24 (Cortex-M0) and, from ST:
STM32F207 (Cortex- M3) and STM32F746 (Cortex-M7).
 The IAR Embedded Workbench (shown in the bar
chart: ICCARM V7.70.1) presents a much smaller degree
of variability than the other tools, but a similar percent-
age size savings. The data is similar if we look at the
matrix manipulation code (core_matrix.c) from the
benchmark in next figure. Here we can see again, that
the code compiled with the IAR’s tool suite is more
compact than others.
 In fact, on 30 out of 34 modules in CoreMark, the
IAR Embedded Workbench for Arm produces tighter
code, and the overall size difference is approximately
20%. Similarly, if we investigate the benchmarks for
IAR Embedded Workbench for RX and IAR Embedded
Workbench for RL78 using real customer applications,
we get 27% to 28% smaller code size than GCC and
other tools.

RVCT 5.06

Variability in the size by development
tool and device

1000

750

500

250

0

stm32f746

stm32f207

lpc11u24

kl25z

k70

GCC 5.4
with LTO

ICCARM
V7.70.1

GCC 5.4

Bytes

RVCT 5.06

Variability in the size by toolchain

60

40

20

0

stm32f746

stm32f207

lpc11u24

kl25z

k70

GCC 5.4
with LTO

ICCARM
V7.70.1

GCC 5.4

1000 bytes, linked

For continuous advice on how to improve developer efficiency, follow IAR Embedded Development on LinkedIn

https://www.eembc.org/coremark/
https://www.iar.com/ewrx#containerblock_11567
https://www.iar.com/ewrl78#containerblock_11522
https://www.iar.com/ewrl78#containerblock_11522
https://www.linkedin.com/company/iar-systems/

7

1. Code size

How much money can you save by going with a smaller
part size? Obviously, this depends on many variables,
including the underlying architecture and whether you
can get a larger device with a similar peripheral set
and package type. As an example, we will look at some
popular Cortex-M4 devices from the same family and
silicon vendor.
 Considering the exact same MCU and peripherals,
one device that has a 512kB flash sells for $17.34 in sin-
gle quantities from a major distributor (as of Nov. 2022)
and a similar device from the same family with 1024kB
flash sells for $21.47 in single quantities from the same
distributor, a difference of $4.13 per part. If you can’t

Download
Discover how much code compression you can
achieve by downloading IAR Embedded Workbench

fit your code into the smaller device, you are going to
necessarily spend 23.8% more on the silicon than you
otherwise would have.
 Even in a modest production run of 10k units, the
added cost is $41K. Doing various benchmarks from
different silicon vendors like ST, NXP, Renesas,
Microchip and TI, there is a price difference of at least
$1.00 when jumping from 256kB to 512kB or 1024kB
for Arm cores or proprietary cores. Again, in a modest
production run of 10K units, the added cost is at least
$10K. The price difference might vary a bit on the
architecture and silicon vendor, but the total cost saving
can be substantial.

https://www.iar.com/downloads
https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=size

8

2. Code Performance

2. Code Performance

How can the application performance influence your BOM
(bill of materials)? How much of a performance bump can
you expect from using the IAR Embedded Workbench vs.
GCC- based tools?

Again, the CoreMark benchmark is a great reference
because it tries to incorporate some of the more
common things that developers do, such as matrix
manipulations, CRC calculations, list processing (both
find and sort), etc. As such, it gives you a “real world”
comparison of what compilers can do, and it also has
anti-tampering mechanisms to ensure that compiler
vendors do not cheat by “hand-optimizing” CoreMark
code. CoreMark benchmarks for a variety of MCU and
compiler combinations can be found on EEMBC’s
website but let’s take a look at some concrete bench-
mark performed by Nordic Semiconductor.
 When compiled for pure performance, the IAR
Embedded Workbench really separates itself from the

250

200

150

100

50

0

0 5 10 15 20 25 30 35 45

IAR (Size)

 Keil (Size)
GCC (Size)

IAR (Speed)

IAR (Speed no size constraints)

Keil (Speed)
GCC (Speed)

Performance (Coremarks) vs. Code size (Flash)

Co
ar

em
ar

ks

Flash (KB)

rest of the pack, particularly against GCC as to be
seen above.
 From these benchmarks, you can see that the IAR
Embedded Workbench outperforms the Keil toolchain
by 19.1% and the GCC toolchain by an astounding
29.8%. It is recommended to check the current and
up-to-date scores at the CoreMark webpage. You can
also run the benchmarks yourself to get the precise
numbers.
 But aside from the cost of a device, does this type
of optimization really mean much to the average
developer? To understand why you should care about
this, let’s perform a similar analysis to when we
examined size optimization. Previously, we looked at

https://www.eembc.org/coremark/

9

2. Code Performance

two devices that were exactly the same except that one
had a larger flash footprint to allow for more code if you
were using a less efficient compiler. It’s a little trickier
to perform similar analysis based on maximum clock
speed of the device since most parametric searches
do not allow you to search at maximum clock speed.
 However, we can compare similar Cortex-M4 devices
from the same silicon vendor family, with the same
packaging, same flash size and RAM size, number of
32-bit timers, number of D/A converters, etc. They can
differ slightly in their communication interfaces (number
of I2C and SPI for example), but the primary difference
is their maximum clock speed (100MHz vs. 180MHz).
 So, how much more is the 180MHz than the
100MHz? According to a major distributor, quite a bit. In
quantities of 10k units, the price of the 180MHz
device is $3.78 per part and the 100MHz device is
$2.89 per part (as of Nov. 2022). This means a difference
of 30.8% if you must go up to a larger clock speed
to get the performance your application needs. For a
production run of 10k units, that is a difference of over
$9K. As you can see, speed optimization can have an
even larger impact on your BOM, particularly if you are
producing in high quantities.

Performance Benchmarks

IAR 7.30.4

ARMCC V5.17

GCC 5.2.1

Complier

212.0

178.0

163.47

Coremarks

3.31

2.78

2.55

Coremarks/MHz

Flash: 35449, RAM: 2273

Flash: 23600, RAM: 1672

Flash: 33336, RAM: 2824

Code size (Flash, RAM) Bytes

(Source: Nordic Semiconductor)

Download
Measure how much performance improvement you can
get by downloading IAR Embedded Workbench

https://www.eembc.org/coremark/
https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=speed

10

3. DevOps

Lower compilation time to increase productivity. In general, each
additional line of code or modification of software in the worst-
case results in a full re-build of the software project in modern
development workflows. In this case, if there is a huge code base,
it takes a long time to build. As a result, the development time is
increased by this waiting time.

10

11

How does this translate to your company?
Steve McConnell’s book “Software Estimation:
Demystifying the Black Art” contains a chart derived
from the estimation model Cocomo II (Constructive
Cost Model), which plots effort in man-months vs. size
of the project in lines of code (SLOC). We can investigate
the COCOMO II Effort Equation:

Effort = 2.94 * EAF * (KSLOC)E
EAF: is the Effort Adjustment Factor derived from the
Cost Drivers.
E: is an exponent derived from the five Scale Drivers.
KSLOC: as measured in thousands of SLOC.
 The EAF in the effort equation is simply the product
of the effort multipliers corresponding to each of the
cost drivers for your project.
 Looking into the cost drivers extracted from the
COCOMO II - Model Definition Manual in figure below,
they have a significant weight. In the worst case, with
extremely low rating levels the effect on the Effort
Adjustment Factor (EAF) = 1.40 (1.20*1.17) to the best
case when the EAF = 0.66 (0.84*0.78) with remarkably
high rating levels.

3. DevOps

Language and Tool Experience (LTEX) & Use of Software Tools (TOOL)

LTEX Descriptors

Rating Levels

Effort Multipliers

LTEX Cost Driver

≤2 months

Very Low

1.20

Source: Rose-Hulman Institute of Technology

6 months

Low

1.09

1 year

Nominal

1.00

3 years

High

0.91

6 year

Very High

0.84

-

Extra High

-

TOOL

Rating Levels

Effort Multipliers

TOOL Cost Driver

Edit, code,
debug

Very High

1.17

Simple, frontend,
backend CASE,
little integration

Very High

1.09

Basic lifecycle
tools, moderately
integrated

Very High

1.00

Strong, mature
lifecycle tools,
moderately
integrated

Very High

0.90

Strong, mature, pro-
active lifecycle tools,
well integrated with
processes, methods,
reuse

Very High

0.78

-

Extra High

n/a

http://www.amazon.com/Software-Estimation-Demystifying-Practices-Microsoft/dp/0735605351/ref=sr_1_1?s=books&ie=UTF8&qid=1320961423&sr=1-1
http://www.amazon.com/Software-Estimation-Demystifying-Practices-Microsoft/dp/0735605351/ref=sr_1_1?s=books&ie=UTF8&qid=1320961423&sr=1-1
http://en.wikipedia.org/wiki/COCOMO
http://en.wikipedia.org/wiki/COCOMO
http://www.softstarsystems.com/overview.htm
https://www.rose-hulman.edu/class/cs/csse372/201310/Homework/CII_modelman2000.pdf
https://www.rose-hulman.edu/class/cs/csse372/201310/Homework/CII_modelman2000.pdf

12

This will directly affect the productivity of your overall
development team. The effect on your organization can
be calculated and adapted for free at http://software-
cost.org/tools/COCOMO/. The same applies for design
and code generation tools: Longer build times for the
automatic generated code impact the productivity on
the design itself, as changes or new logic need to be
tested and integrated into the overall system before
proceeding with the design.
 According to various customers feedback and also
stated in the customer story, the IAR Embedded
Workbench running on Windows showed at least twice
as fast build speeds compared to any other com-
mercial tools. This is also valid for the IAR Functional
Safety certified tools. The build times using IAR Build
Tools for cross-platform support showed even better
performance (4x times faster) when running on Ubuntu
with the same hardware host. Performing the Standard
C-STAT static analysis checks on Ubuntu took 25% of
the time it took to perform on Windows.

Build and analysis results delivered faster means faster
convergence to Continuous Deliveries (CD).
The build times displayed in the figure used:
 – 574 C/C++ source files
 – Highest compiler optimization level
 – Analysis performed after project is built
 – Comparison used the same host hardware,
 Intel i7-8700K, 24 GB RAM
 – Using 1, 2, 4 and 8 CPU cores
 Building embedded software projects with IAR Build
Tools on Ubuntu is faster than building on IAR Embedded
Workbench on Windows, generally taking less than 50%
of the time to build the project.

Additionally, there is an essential need for automated
processes to eansure quality and run builds and tests
continuously in modern embedded development
workflows. Embedded software R&D teams can achieve
shorter time to market for new features when proper
DevOps practices are implemented with the same
functionality from the underlying command line tools in
cross-platform frameworks.
 The IAR solutions support modern and scalable build
server topologies on Ubuntu, Red Hat and Windows for
CI/CD pipelines including Virtual Machines, Containers
(Docker) and Self-hosted Runners.

1

Build Times for
IAR Embedded Workbench vs. IAR Build Tools

0:06:00

0:04:00

0:02:00

0:00:00

IAR Embedded

Workbench

IAR Build Tools

Source: IAR

when using: iccaarm -oHz

2 3 4

3. DevOps

Download
Check how to increase your productivity by
downloading IAR Embedded Workbench

https://www.iar.com/about/customers/osong-medical-innovation-foundation-kbio/
https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=devops

13

Dockable windows
and tab groups

Power
vizualization

4. Debugging

To reduce debugging time, developers need to master advanced
debugging strategies available on modern microcontrollers and
supported by professional development tools. Here is your smart
and advanced debugging features:

The study “An Exploratory Study of Debugging Episodes”
by Abdulaziz Alaboudi and Thomas D. LaToza observed
that developers spend about half of their programming
time debugging. Discussions at StackOverflow and
Reddit claim even higher numbers of up to 80% or
even 90% of a developer’s time spent on debugging.
This sums up to about 1,000 to 1,600 hours a year for
only one developer!

4. Debugging

Integrated debugger
for source and
disassembly

Timeline
window

Performance
analysis

RTOS
awareness

Edit source files
without leaving the

debug session

So if you think your developers spend their time on
great innovations, think again: Most of your budget is
spent on debugging, and if debugging takes too long,
then releases and new versions are delayed. R&D is
spending ever-increasing time on finding and solving
problems on software systems, which are getting more
complex by the minute.

https://arxiv.org/abs/2105.02162
https://stackoverflow.com/questions/2325994/what-of-programming-time-do-you-spend-debugging
https://www.reddit.com/r/ProgrammerHumor/comments/60na04/only_half_of_programming_is_coding_the_other_90/

14

Many programmers turn to general-purposes
debuggers, such as GDB. These let the programmer
step forward, inch by inch, through their code and set
watchpoints as they go – which is probably the least
efficient debug method known to humankind. Unfor-
tunately, embedded software developers default to
debugging with breakpoints and single-stepping, often
due to tool limitations. To reduce debugging time, de-
velopers need to master advanced debugging strate-
gies available on modern microcontrollers and support-
ed by professional development tools.
 The quality of a product will only be as good as the
debugging capabilities that a developer has available.
Can your team make sure to analyze and track the
exact root of a specific bug? Are they fixing the issues
or mainly applying workarounds using their best guess
because the tool cannot provide enough detailed and
real-time information? The state-of-the-art C-SPY

Debugger included with IAR Embedded Workbench
gives full control of the application in real time.
 Furthermore, it offers many smart features like complex
breakpoints (code and data – unlimited), watchpoints,
profiling, code coverage, timeline with interrupts, power
logging, and even trace. Bugs can easily be exterminated
from their source reducing the time spent debugging.
 Mastering all these techniques and knowing when
to use them can dramatically decrease how much time
is spent debugging when a defect does get into the
system. IAR has heard of cases where
developers from partners have gone from debugging
80% of the time down to less than 5%. Taking a
conservative approach in reducing at least two thirds of
debugging time would mean max. 500 hours per year,
freeing up a lot of person-hours (~1,000 hours) that can
be reallocated increasing available developer time.

4. Debugging

Download
Try advanced debugging by downloading
the IAR Embedded Workbench

https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=debug

15

5. Code Quality

The cost of defects. On average – according to Steve McConnell’s
book “Code Complete” – a developer creates 70 bugs per 1,000
lines of code. Roughly 20% of those – 15 bugs per 1,000 lines of
code – will find their way to the customers. And the bitter truth is that
fixing a bug takes 30 times longer than writing a line of code.

By introducing code quality control early in the develop-
ment cycle, the impact of errors and the effort for their
elimination can be minimized. Providing static analysis
right at the computer of each developer with well-
defined coding standards can help them find issues in
the source code during development, where the cost
of errors is smaller than in the released product.
 Additionally, many people talk about designing their
code for reuse, but software estimation models claim
reused code at being at least 50 percent of the effort
of simply writing new code.
 The Boehm’s COCOMO method shown on the left
side estimates how the relative cost of writing the code
is dramatically impacted by how much modification you
do to the reused software in the dotted line. The x- axis
is the percentage of modification you do to the code
you intend to reuse while the y-axis represents the
percentage of what it would be if you wrote fresh code.
Note that for two of the three data samples of code, you
did not have to modify much of the supposedly reused
code to suddenly jump to 50% of the effort of rewriting
the code from scratch. The AAM (Adaptation Adjustment
Modifier) lines shows that small modifications in the
reused product can generate disproportionately large
costs.The key point here is that if you really want to
reuse code, it has to be of remarkably high quality and
well-designed in order to be cost-effective.

5. Code Quality

0.0

Boehm’s COCOMO non-linear
reuse effects method

1.5

1.0

0.5

0.0

Re
la

tiv
e

co
st

50 100

Relative modification of size (AAF)

(Selby 1988)

Selby data
summary

AAM Worst case
AAF = varies
AA = 8
SU = 50
UNFM = 1

AAM Best case
AAF = varies
AA = 0
SU = 10
UNFM = 0

AAM

Source: Rose-Hulman Institute of Technology

For continuous advice on how to improve developer efficiency, follow IAR Embedded Development on LinkedIn

https://www.amazon.com/gp/product/0735619670/
https://en.wikipedia.org/wiki/COCOMO
https://www.rose-hulman.edu/class/cs/csse372/201310/Homework/CII_modelman2000.pdf
https://www.linkedin.com/company/iar-systems/

16

The fastest way to improve code quality is to use code
analysis tools. In fact, if you are creating a functional-
safety certified application, you are even required to
use static analysis. These types of tools help you find
the most common sources of defects in your code,
but they also help you find problems that developers
tend not to think or worry about when they are trying to
write their code, especially when they are just putting
up scaffold code to just get something working. These
types of tools really help you develop better code
because they enforce coding standards. Depending
on the quality of your static analysis solution, they can
check for many other potential issues while you are still
writing on your code.
 There are several reasons why code quality is a
big issue. First, depending on the maturity of your
development organization, developers can spend up
to 90% of their time on debugging. If you could quickly
isolate defects before they make it into a formal build,

The total cost and cost per defect
Source: Capers Jones: “Estimating Software Costs”

$25,000

$20,000

$15,000

$10,000

$5,000

$0
0 10 20 30 40 50

Co
st

s

Volume of defects

Total Costs Cost per volume

you would have a lower defect injection rate which
means you can meet your organization’s quality metrics
much faster. Second, it also means that your code has
fewer remaining bugs overall, which makes it a suitable
candidate for reuse since using the code again has a
lower chance of uncovering a previously undetected
bug. High-quality code is easier to maintain because of
fewer defects and – if it follows good software engineering
principles – it will be easier to extend, therefore reusing
it really does give you faster follow-on projects.

Why quality matters
What is interesting is that the cost per defect at each
phase goes up as expected, but total costs are going
down due to the decreased volume of defects in the
figures above from Capers Jones’ book on “Estimating
Software Costs”. In practice, it does not take longer to
find and fix bugs at each phase, but the costs are still
there despite diminished volume. It is worth noting,

The savings versus total cost of reducing the
number of defects entering testing at each
phase by 25 %
Source: Capers Jones: “Estimating Software Costs”

$25,000

$20,000

$15,000

$10,000

$5,000

$0
0 10 20 30 40 50

Co
st

s/
Sa

vin
gs

Volume of defects

Total Costs Savings

5. Code Quality

https://pdfprodocs.vip/download/4330427-estimating-software-costs-jones-capers
https://pdfprodocs.vip/download/4330427-estimating-software-costs-jones-capers
https://pdfprodocs.vip/download/4330427-estimating-software-costs-jones-capers
https://pdfprodocs.vip/download/4330427-estimating-software-costs-jones-capers

17

Enhancing coding skills
Additionally, on another study done by Dr. Dobbs
(figure to the left) pegs it as lowering defect injection
by 41% – a massive savings in test time which goes
straight to the bottom line not only in engineering time
saved, but also accelerated time to market.
 The injection rate in this study was quite constant
from month-to-month until the organization introduced
coding standards, then the defect rate dropped like a
rock. As the developers became more familiar with the
standard and had fewer deviations, the defect
rate plummeted.

Violations/KLOC
Source: Dr. Dobbs

20.0

16.0

12.0

8.0

4.0

0.0
Nov Dec Jan Feb Mar May

Vi
ol

at
io

ns
/K

LO
C

Coding standards conformance checking

Jun Jul

19.0
17.7

18.1

10.6

11.1

6.2
5.1

5.2

2.2

5. Code Quality

also, that as a product matures into operation, the
maintenance cost per defect is much higher due to the
impact of servicing a fielded product. Other intangible
costs such as damage to brand and loss of future
customers and income, are still factors to consider.
 So, what is the return on investment considering
these factors? Static analysis reduces the number
of errors in software development at all stages of
development. A simple analysis is to reduce the
number of errors using the data in the figure from the
previous page. Given this reduction in errors introduced
during development, we see a significant cost
reduction.
 This simple analysis yields savings of about $126
per bug, which – assuming an average of 15 bugs per
1,000 lines of code during development – translates to
savings of $1,900 per 1,000 lines of code. Of course,
results will vary, also based on other factors such as
labor rates, defect detection and repair time, and defect
density. But since many systems use 10 to 100KLOC
or more, the business case for static analysis is clear.’

https://www.drdobbs.com/

18

Google published an article in an ACM publication
looking at the merits of code analysis. While the article
takes a holistic view of their entire codebase including
C, C++, and Java, the results are very clear:
 “Compiler errors are displayed early in the development
process and integrated into the developer workflow. We
have found expanding the set of compiler checks to be
effective for improving code quality at Google.”
 The authors stated that moving static analysis
checks into the compiler workflow and making them
appear as errors, drastically improved the attention
paid to the tool’s findings and that it ultimately meant
that their code was of a much higher quality.

Furthermore, they discuss a survey sent to developers
who recently encountered a compile time error and
developers who had received a patch with a fix for
the same problem:
 “Google developers who perceive those issues
flagged at compile time (as opposed to patches for
checked- in code) catch more important bugs; for
example, survey participants deemed 74% of the issues
flagged at compile time as “real problems,” compared
to 21% of those found in checked-in code.”
 The article also points out the importance of having
code analysis as part of the workflow by stating that
when they automatically ran commits through a static
analysis tool and invited engineers to look at the
analysis dashboard, very few engineers followed
through. Having instant feedback in the compilation
process made static analysis easier to use and harder
to ignore. Therefore, Google chose to integrate static
analysis by default in everyone’s workflow. They believe
that for code analysis tools to succeed, developers
must feel they benefit from their use and enjoy using
the tools. The point is that coding standards really do
have an impact in development efforts.

5. Code Quality

Download
Learn how to improve code quality and code reusability
by downloading IAR Embedded Workbench

https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext
https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=quality

19

6. Access to Support

Access to technical support pays off your development tools.
What really distinguishes the quality of a professional tool is
the quality of the technical support provided with local teams
all over the world, speaking the customers’ language.

If there is a problem with free tools, such as a bug in the
compiler or in the libraries, the only thing that users can
do is try to fix it by themselves or post an issue on the
relevant repository. They hope that the problem will
be fixed by the GNU community, or pay someone to
fix or add the features. What this will really cost the user
(in time and/or money) is impossible to predict.
 Not having the entire development team stopped
due to issues on the development tools is one of the
biggest advantages of making use of the professional
development tools from vendors like IAR. IAR provides
easily accessible technical support with local support
teams all over the world, covering several different lan-
guages such as English, Swedish,
German, Korean, Japanese, Chinese, and Arabic.
Customers get specified lead times and temporary
workarounds to enable them to continue focusing on
their application.
 IAR will use reasonable efforts to resolve errors or
reduce the severity level of the error via a workaround
or a correction of the error in accordance with the repair
time. IAR recognizes that errors defined as critical or
serious can impose a major inconvenience for the
Licensee, and IAR will therefore use its reasonable
best efforts to provide a correction of the error as soon
as possible, irrespectively of the repair times defined
herein.
 The figure in the next page shows repair times for
regular Support and Update Agreement (SUA) customers,
with a response time from IAR within one or two days
and a repair time for critical issues in no more than 15
working days.

6. Access to Support

How do I get a bug fixed
or a feature added?
There are lots of ways to get something fixed. The list

below may be incomplete, but it covers many of the common

cases. These are listed roughly in order of decreasing

difficulty for the average GCC user, meaning someone who

is not skilled in the internals of GCC, and where difficulty

is measured in terms of the time required to fix the bug.

No alternative is better than any other; each has its

benefits and disadvantages.

• Fix it yourself. This alternative will probably bring

 results, if you work hard enough, but will probably take

 a lot of time, and, depending on the quality of your work

 and the perceived benefits of your changes, your code may

 or may not ever make it into an official release of GCC.

• Report the problem to the GCC bug tracking system and

 hope that someone will be kind enough to fix it for you.

 While this is certainly possible, and often happens, there

 is no guarantee that it will. You should not expect the

 same response from this method that you would see from a

 a commercial support organization since the people who

 read GCC bug reports, if they choose to help you, will

 be volunteering their time.

• Hire someone to fix it for you. There are various

 companies and individuals providing support for GCC.

 This alternative costs money, but is relatively likely

 to get results.

 Source: https://gcc.gnu.org/faq.html#support

19

https://gcc.gnu.org/faq.html#support

20

The cost savings that result from an all-inclusive support
and services agreement can be easily calculated, for
example according to EMBECOSM’s case study “How
much does a compiler cost” based on GCC/LLVM:
Toolchain maintenance requires a typical effort of 0.25
engineer months per month. There is a rule of thumb
that the cost to employ is typically 1.25 to 1.4 times the
salary depending on the benefits, payroll taxes and
corporate liability insurance. Considering that, a compiler
engineer costs on average $117K per year in the US x
1.4, that would be $3.4K per month for maintenance or
per serious bug to be fixed.
 The IAR Embedded Workbench license is provided
with included Support and Update Agreement for 12
months. Subsequently, it costs customers only 50% of
the own monthly maintenance cost per year to keep
the SUA active. Not considering the fact that the
development team stays productive at all times since
the IAR team will be able to provide workarounds in
one to two working days.

Response and repair times within regular SUA

Critical

Serious

Moderate

Minor

Security level

Source: IAR

1 working day

1 working day

2 working days

2 working days

Response time

No more than 15 working days

No more than 30 working days

At next scheduled service or feature release, but not later than one year

At IAR’s discretion

Repair time

6. Access to Support

Download

Explore IAR’s embedded expertise by checking
the resources and documentation by downloading
IAR Embedded Workbench

https://www.embecosm.com/2018/02/26/how-much-does-a-compiler-cost/
https://www.embecosm.com/2018/02/26/how-much-does-a-compiler-cost/
https://www.comparably.com/salaries/salaries-for-compiler-engineer
https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=support

21

Core

Device

 Processor

7. Development Environment

The development team’s productivity relies on streamlined
development processes with the assurance that new
devices, middleware, and extensions integrate seamlessly
into a single toolbox enabling an uninterrupted workflow.

Today’s electronic devices demand a gradually growing
number of embedded systems that often include a port-
folio from 8-, 16-, 32- and 64-bit applications. At the same
time, embedded applications are becoming increasingly
complex and sophisticated. The hunger for new products
with even more differentiating features has become so
big that the time to market of a single product can be a
decisive factor for the success of a whole company.
 The embedded development tools from IAR support
15,000 devices, covering 8-, 16-, 32- and 64- bit MCU/
MPUs from over 200 semiconductor partners, serving
some 100,000 developers worldwide. This is the broad-
est device support and the strongest ecosystem. IAR
Embedded Workbench allows customers to move freely
between processors from all major vendors, in one sin-
gle IDE and environment. However, each architecture still
requires a separate license.
 The market’s broadest device support is made
possible through a generic platform and common
components for the different targets. Moreover, IAR adds
architecture- and processor-specific adaptations and
optimizations that let developers create efficient, stable
code, and at the same time improve development efficiency.
 Choosing a compiler that provides an integrated
development environment which provides efficiency to
shorten development time is paramount. And this is a
key factor in ensuring consistency in application stabil-
ity. Standardizing on embedded development tools like
IAR Embedded Workbench gives development teams
streamlined development processes, an uninterrupted
workflow, and a single toolbox in which all components
integrate seamlessly. It also simplifies development and

enables code reuse across projects and processors,
thus avoiding any delays in production.
 Why is this important? It is common for development
teams to work concurrently with several different
processors. They need to be able to choose the processor
best suited for the application at hand. And if they for
some reason need to change the processor, they do not
have to start from scratch, but benefit greatly from not
having to change the tools as well.
 There is an initial investment, which pays off on the
long run: To get started, it takes a developer at least
one working week to learn a new IDE and toolchain.
In-person training courses like “Getting Started with
IAR Embedded Workbench”, “Efficient Programming”
and “Advanced Debugging” from the IAR EMB Academy
which help developers to fully leverage the tool suite’s
features require three working days.

Cortex-M85

Cortex-M0+

Cortex-M1

Cortex-MS1

Cortex-M3

Cortex-M4

Cortex-M7

Cortex-R4

Cortex-R5

Cortex-R7

Cortex-R8

Cortex-R52

Cortex-R52+

Cortex-R82

Cortex-A5

Cortex-A7

Cortex-A8

Cortex-A9

Cortex-A15

Cortex-A17

Cortex-M23

Cortex-M33

Cortex-M35P

Cortex-M55

Cortex-M85

Cortex-A35

Cortex-A53

Cortex-A55

Cortex-A57

Cortex-A72

STAR

7. Development Environment

https://training.iar.com/

22

Modern development workflows also demand flexibility
and additional integrations with solutions from partners in
the ecosystem. The IAR Visual Studio Code extensions
are compatible with all the latest versions of IAR
Embedded Workbench and IAR Build Tools and are
available at Visual Studio Code Marketplace enabling
developers to build and develop projects from VS Code.
The same applies to the IAR Eclipse plugins to take
direct advantage of the high-quality IAR build toolchain
alongside the advanced features. The extensions can
be used for other build systems, such as CMake, source
control and versioning extensions like GitHub to meet
the development demands.
 The IAR Embedded Workbench and IAR Build Tools
include access to professional technical support for the
first 12 months and access to the IAR Academy on-demand
courses for a smooth start and improved productivity.
 The all-in-one integrated IDE and extensions enable
programmers to have the same set of capabilities in
one place without needing to constantly switch tools.
Tighter integration of development tasks boost developer
productivity and efficiency.

Additionally, developers need two extra days to digest
the information and try the tutorials by themselves. Given
that the average salary for an embedded developer in the
US is $104K x 1.4 (cost of salary including the benefits,
payroll taxes and corporate liability insurance), this
translates into a cost of almost $2,800 per developer
to get up to speed with the new toolchain.
 This does not take into consideration that it might take
way longer for the developer to get confident in the new
toolchain so the consistency in application and stability
can be secured. But these one-time expenses for the
training of developers are a worthwhile investment –
which does not have to be made again just because a
different processor is used. Especially as the developers’
growing experience and expertise in working with a
familiar toolchain leads to further time and cost savings.

IAR Build

7. Development Environment

Develop IAR projects with intellisense,

C-STAT and build support.

IAR C-SPY Debug
Debug embedded applications using

the IAR C-SPY debugger.

Download
Test your code for different MCU/MPUs and with VS Code
Extensions by downloading the IAR Embedded Workbench

https://marketplace.visualstudio.com/search?term=iarsystems&target=VSCode&category=All%20categories&sortBy=Relevance
https://www.comparably.com/salaries/salaries-for-embedded-software-engineer
https://www.comparably.com/salaries/salaries-for-embedded-software-engineer
https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=ide

23

8. Compliance & Safety

Speeding the path to safety certification with certified tools.
Functional safety is highly desirable in any application
– but for some applications, it is an absolute requirement.
Building applications with ensured functional safety can be
both challenging and time-consuming unless you choose to
work with pre-certified development solutions.

There are numerous benefits to following the safety
certifications: It will reduce liability risks associated with
your application and reduce the odds of product recall
and the number of firmware updates. Additionally, it will
ensure compliance with international standards and
requirements aside from protecting your company’s
reputation and the corporate objective.
 There are many standards and safety certifications
in place. Each one caters to a specific industry or product
category. The two most broad-reaching certification
standards are ISO 26262 (road vehicles) and IEC 61508
(electronic safety-related systems), which is considered
the umbrella of the certifications. Most functional safety
development tools aim for certifications according to
these two standards because they cover almost all
other certifications and industries.
 Specific certifications may go above and beyond
these two standards, but they are considered the basis
for many others, e.g., the EN 50128 for railway systems
which is similar to IEC 61508. In general, all standards
provide clear processes to assess risk for safety critical
systems and assign safety goals. Additionally, also
covered are the best practice development process
requirements in order to reduce systematic failures.
Finally, there are also ongoing procedures to ensure
functional safety after product deployment. In short:
The standards outline how to identify and deal with
risks, and all of them require tools certified for
functional safety.

8. Compliance & Safety

24

Functional safety certification for a tool means that the
development tool has gone through a rigorous
qualification process to ensure that it produces reliable
and repeatable results when compiling code. Addition-
ally, it means that development processes are in place
to manage how the tool works with specific require-
ments put forth by different functional safety standards
and there are test and quality measures of the tool that
show validation of compliance with different language
standards.
 The certification process is rather rigorous. The IEC
61508 standard details how support tools should be
qualified in Section 7.4.4, but it is rather ambiguous on
how a compiler should be qualified. Consider clause
7.4.4.10:
 “The selected programming language shall have
a translator which has been assessed for fitness for
purpose including, where appropriate, assessment
against the international or national standards.”

These and other stipulations make it difficult to certify
a tool on your own and can result in significant work
on your part to prove fitness and even more work to
document why you think you have proven fitness.
This only gets worse as you try to achieve increasingly
higher Safety Integrity Levels (SIL).
 Part of the process is running a set of validation
test suites in which thousands of test programs are
compiled, and the results are compared against
expected results. Another part is the standard-
conformance tests. None of these tests are exhaustive
but should identify some issues.
 The trick for safety validation is to make sure all known
issues are documented. Functional safety means that
the known imperfections are clearly documented and
that you have a process in place to identify and document
imperfections. For full validation you must fix or document
and justify each and every deviation from expected
behavior, so there are no known unjustified deviations.

Broad coverage of safety standards

8. Compliance & Safety

Machinery control
ISO 13849 IEC 62061

Agriculture & forestry
ISO 25119

Industrial
IEC 61508

Automotive
ISO 26262

Process industry
IEC 61511

Railway
EN 50128 EN 50657

Household appliances
IEC 60730

Medical
IEC 62304

For continuous advice on how to improve developer efficiency, follow IAR Embedded Development on LinkedIn

https://www.linkedin.com/company/iar-systems/

25

Validating your own toolchain for functional safety is
expensive and time-consuming. Tool certifications can
take up to 12 months and occupy several employees,
nominally two to four. Considering the salary for an
embedded developer in the US, the estimated cost can
be up to $145K depending on the extra testing require-
ments. The actual numbers will inevitably depend on
which SIL your project requires.
 Notice that if you want to reuse an uncertified tool
from another project that did eventually achieve cer-
tification, then you will still be required to prove that
your new project is similar enough to the previous one.
You have to provide evidence that you use the same
functionality of the toolchain as for the previous project
that is impossible without source code-level access. In
addition, you must prove that you use the toolchain in
an equivalent manner like the one with safety certification.
Usually, you might end up having to do the same work
to requalify the tool.

By using an already functional safety-certified develop-
ment tool, you no longer have to prove your toolchain
complies with the safety standard – you only need to
certify your application. In fact, using a functional safety-
certified toolchain and coding standards can save a
lot of time and money as it eases and speeds up the
application certification process. It also means that
the test-and-fix phase of the Software Development
Lifecycle (SDLC) can focus on finding bugs in the source
code instead of wondering if a compiler issue is
causing problems.
 The IAR Functional Safety solutions include tools
certified by TÜV SÜD covering 10 different safety stand-
ards with long-term support through a special function-
al safety agreement and safety certificate
renewal for the duration of the agreement. For customers
working on safety-critical software, IAR offers prioritized
support with the Functional Safety SUA, offering a
response time of only one day, and a repair time for
critical issues in no more than 10 working days:

Response and repair times within functional safety SUA

Critical

Serious

Moderate

Minor

Security level

Source: IAR

1 working day

1 working day

1 working day

1 working day

Response time

No more than 10 working days

No more than 20 working days

At next scheduled update or upgrade of the product, but not later than one year

At IAR’s discretion

Repair time

8. Compliance & Safety

Download
Assess the complete development environment for Safety
by downloading the standard IAR Embedded Workbench

https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=safety

26

USB Dongle

Single developer,
mulitple computers

Mobile
Locked to

Users

9. Licensing

Finding the right license type can maximize the ROI. There are many
use cases for licenses, and the correct mix and management of
licenses essentially help optimize your tools’ spending. It all comes
back to the question of what the organization or development
team needs.

IAR offers flexible licensing and pricing options to max-
imize the return on investment for companies. License
types from standalone, mobile to network and global
licenses enable easy management of licenses, and
license pools are displayed above.
 The Network License is convenient and cost-
efficient for a team of developers. It allows sharing of
a pool of licenses among a group of users over a
local network. While there is a limit on the number of
concurrent users, the number of installed copies that
can occupy a license is unlimited. The Network License
is managed by a license server that is included in the
delivery. New users can be added to an existing
Network License.

9. Licensing

For customers with operations and development
projects at several sites and in different countries, IAR
offers geographical flexibility through Global Network
Licenses. The ordinary Network License is restricted
to one single geographical site, whereas the Global
Network License provides the possibility to have users
accessing the same network license from multiple
sites globally.
 A Mobile License is a single-user license that allows
you to be flexible with your work location. It is locked to
a USB dongle that you can bring with you and use with
any PC anywhere. It works even if the PC is without a
network connection. Keeping the license on a dongle
also protects your license from hardware failure.

License types

One computer

Single developer

Stand-alone

Learn more

Locked to

Users

One site

Local teams

Network
Locked to

Users

Multiple sites

Global teams

Global
Locked to

Users

https://www.iar.com/knowledge/support/licensing-information/?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=support&utm_content=license

27

9. Licensing

A PC-Locked License (Stand Alone) is locked to a
specific PC. It is a personal, single-user license and can
only be used by having physical access to your PC.
It also works if the PC is not connected to a network.
Let us examine a hypothetical company with two
sites having 30 developers that need access to the
development tools, 15 in each site, and a project
duration of 2 years (20% yearly for Support and
Update Agreement renewals).

Considering the standalone license being the price
reference ($) that could be any local currency and
depends on the architecture (8-,16-,32- and 64-bit).
The other license types have a premium cost depending
on the flexibility. The dongle license costs 16% extra
(1.16$), the network license costs 33% extra (1.33$) and
the global license costs 100% extra (2$).
 Providing standalone licenses to all developers
would cost 30 x $ = 30$ (34.8$ in the case of dongle
 licenses). If the company would move to network
licenses that cost would be, 10 network licenses
(recommended) covering the 15 developers on each
site. Network licenses are only allowed for the local site
resulting in a cost of 10 x (1.33$) = 13.3$ per site, total-
izing 26.6$ with a cost reduction of ~13% compared to
the standalone model. The next step would be moving
to global licenses and that would mean 12 licenses
total (recommended but could be less if the sites don’t
have overlapping working hours) for both sites with a
cost of 12 x (2$) = 24$. This is a cost reduction of ~11%
compared to network licenses and ~25% compared to
standalone licenses. This example is not considering
the administration and problems with damaged work-
stations or lost dongles that need to be replaced. Notice
that the 20% for the yearly Support and Update Agree-
ment will also follow the cost reduction percentages.
 Finding the right license type for your organization
can have a significant impact, reducing up to 25%
of the total licensing cost but also facilitating the
management of the licenses.

Download
Experiment with the IAR flexible development environment
by downloading the IAR Embedded Workbench

https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=licensing

28

10. Conclusion

Keeping control of a product’s development time is critical to
controlling costs and meeting delivery targets. These goals can
be achieved using tools and services designed to help engineers
create products quickly and efficiently.

29

10. Conclusion

Summary of ROI and TCO

Why should you care about code size and benchmarks?

How can the applications performance influence your BOM (bill of materials)?

Lowering compilation time to increase productivity

Shorten debugging time for faster time to market

The cost of defects and why code quality matters

Access to technical support pays off your development tools

Broadest device support in one IDE improving developer’s productivity

Speeding the path to safety certification with certified tools

Find the lincense model that fits your needs

Use case

Source: IAR

$1 to $4 per device

$0.50 to $0.90 per device

increase productivity by reducing build
times up to 50% (Linux)

Free up person hours ~1.000 hours

$1.9K per 1.000 LOC

$2.4K per month

$2.0K per developer

Up to $145K per project

Maximize usage and secure investment,
depends on number of developers

Saving & improvements

$10K to $40K per product series

$5K to $9K per product series

Save up to 50% instances/hours
in cloud services

$24K per year

$19K to $95K per 1.000 to 5.000 KLOC

$43K per project

$10K per project

$145K per project

Save up to 25% of the total
licensing cost

Savings

Using commercial tools with an upfront cost versus
“free” tools offered to lower barriers to entry for using
specific chips in product designs can be an effective
way to stay on schedule and reduce the overall cost
of developing a product. The companies and develop-
ment teams are “buying” a faster time to market and
securing the delivery of products with quality. Finally,
the use cases provide a clear picture on the return on
investment (ROI) and total cost of ownership (TCO) for
developers working with professional solutions, like
the ones from IAR.

Disclaimer: The information and numbers in this report are approxi-
mations for general informational purposes only and will be updated
quarterly. The numbers and results might vary from version to version.
IAR makes no representation or warranty, expressed, or implied. Your
use of the information and interpretation of the results of the use cas-
es is solely your own responsibility. This report may contain links to
third-party references and content, which we do not warrant, endorse,
or assume liability for.

29

For continuous advice on how to improve developer efficiency, follow IAR Embedded Development on LinkedIn

https://www.linkedin.com/company/iar-systems/

30

10. Conclusion

Download

What’s next?
Speed up time to market and secure quality with
powerful integrated solutions by downloading
the IAR Embedded Workbench

Author

Rafael Taubinger
Sr. Product Marketing Manager

Authors

Contributors

Shawn Prestridge
FAE Manager US

Anders Holmberg
Chief Technology Officer

David Källberg
FAE Manager EMEA

Hyun-Do Lee
Sales Manager

https://www.iar.com/downloads?utm_source=crm&utm_medium=email&utm_campaign=iar_brand&utm_term=embedded+systems&utm_content=conclusion

31

Tomorrow’s intelligence,
delivered today

iar.com

